
Ribosomal proteins as distinct "passengers" of microvesicles: new semantics in myeloma and mesenchymal stem cells' communication

Discussion

Mahmoud Dabbah, M.Sc. 17, Michael Lishner, M.D 127, Osnat Jarchowsky-Dolberg, M.D 37, Shelly Tartakover-Matalon, Ph.D. 47, Yaron S Brin, M.D. 5, Metsada Pasmanik-Chor, Ph.D. 6, Liat Drucker, Ph.D. 17 מרכז רפואי מאיר ¹Oncogenetic laboratory, ²Research institute, ³Hematology Unit, ⁴Autoimmunity Laboratory, ⁵Orthopedics Department, Meir Medical Center, Kfar Saba and 6Bioinformatics Unit, G.S.W. Faculty of Life Sciences 7Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Aims

To assay the protein cargo transported from MM-MSCs to MM cells via MVs with focus on ribosomal proteins (RPs) and their role in MM translation and phenotype design.

Results (figures 1-3)

Proteomics analysis demonstrated increased levels and repertoire of RPs in MM-MSCs MVs compared to normal donors (ND) counterparts (n=3-8; p= 9.96E-08) (fig 1). We limited the RPs load in MM-MSCs MVs (fig 2), reapplied the modified MVs to MM cell lines and demonstrated that the RPs are essential to the proliferative effect of MM-MSCs MVs on MM cells (n=3; p<0.05)(fig 3). We also observed that inhibition with KPT-185 displayed the most extensive effect on RPs delivery into the MVs (↓80%: p=3.12E-05).

Background

Aberrant mesenchymal stem cells (MSCs) in multiple myeloma (MM) bone marrows (BM) promote disease progression and drug resistance. Previously, we have demonstrated that microvesicles (MVs) from MM-MSCs promote MM

nnes av stà a carrò de

Methods

- Proteomic analysis (mass spectrometry)
- Inhibitors of RPs (starvation-1% FBS: RSK-Bi-D1870; XPO1-KPT-185)
- BM-MSCs' RPs expression : flow cytometry

Results (figure 4)

We assayed the expression of select RPs (n=10) in BM-MSCs cell populations (ND and MM; n≥6 each) and observed that each patient had several subgroups of BM-MSCs whereas the NDs were homogeneous and of lower expression.

These findings bring to light a new mechanism in which the tumor microenvironment participates in cancer promotion. MVs-mediated horizontal transfer of RPs between niche MSCs and myeloma cells is a systemic way to bestow pro-cancer advantages. This capacity also differentiates normal MSCs from the MM-modified MSCs and may mark their reprogramming. Future studies will be aimed at assessing the clinical and therapeutic potential of the increased RPs levels in MM-MSCs MVs.